4008-953622
数据分析
数据分析师要学会什么技能?
发布时间:2020-01-30    信息来源:未知    浏览次数:

  数据分析师要学会Excel、掌握SQL Server或者Oracle的SQL语句、掌握可视化工具。

  首先是Excel,貌似这个很简单,其实未必。Excel不仅能够做简单二维表、复杂嵌套表,能画折线图、Column chart、Bar chart、Area chart、饼图、雷达图、Combo char、散点图、Win Loss图等,而且能实现更高级的功能。

  包括透视表(类似于BI的多维分析模型Cube),以及Vlookup等复杂函数,处理100万条以内的数据没有大问题。最后,很多更高级的工具都有Excel插件,例如一些AI Machine Learning的开发工具。

  掌握SQL Server或者Oracle的SQL语句,虽然你是业务分析师,但如果取数据能少依赖于IT人员和IT工具(比如BI的多维分析模型,有时候并不能获取你想要的数据),对于做业务分析,无疑是如虎添翼,我曾经见过华为的会计能写七层嵌套的SQL语句,很吃惊。

  掌握可视化工具,比如BI,如Cognos、Tableau、FineBI等,具体看企业用什么工具,像我之前用的是FineBI。

  这些工具做可视化非常方便,特别是分析报告能含这些图,一定会吸引高层领导的眼球,一目了然了解,洞察业务的本质。另外,作为专业的分析师,用多维分析模型Cube能够方便地自定义报表,效率大大提升。

  要熟练使用 Excel、至少熟悉并精通一种数据挖掘工具和语言、撰写报告的能力、要打好扎实的 SQL 基础。

  Excel 可以进行各种数据的处理、统计分析和辅助决策操作,作为常用的数据处理和展现工具,数据分析师除了要熟练将数据用 Excel 中的图表展现出来,还需要掌握为生成的图表做一系 列的格式设置的方法。

  以R语言为例,R编程语言在数据分析与机器学习领域已经成为一款重要的工具。R 作为脚本语言凭借其良好的互动性和丰富的扩展包资源可以方便地解决大部分数据处理、变换、统计分析、可视化的问题,并可以重现所有的细节。

  在撰写报告时,深入地思考,深入分析,逻辑严谨,结论有说服力,能提前预测数据趋 势,能从问题中引申出解决方案,提出有指导意义的分析建议,这些都是一名优秀的分析师所体现的特质。

  SQL 基础之所以重要,是因为数据分析师分析的数据大多都是从数据库中提取而来的。有良好的 SQL 功底并能熟悉使用,不仅能提取到需要的数据,还能大大提高工作效率。

  1、与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。

  2、就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。

  作为数据分析师,Excel是必备技能。Excel 是经过检验的可靠的数据分析工具,它广泛存在,非程序人员也能便捷操作,所以大多数企业即使也使用其他工具,但 Excel 工具还是他们的不二选择。

  统计学同样是数据分析师的必备技能之一,你只有学好了统计学才能谈得上数据分析。统计知识会要求我们以另一个角度看待数据。当你知道AB两组的差异用平均值看是多傻的事情,你的分析技巧也会显著提高。如果你想成为一名出色的数据分析师,那么你就必须要会统计学。

  sql是所有数据库查询的语言,sql非常容易入手。针对不同的数据库,如mysql、sqlserver、oracle等,sql语法会有所不同,但是总体上大同小异,只是细微处的差别。而且如果你有数据库基础的话,只需要找些sql查询的习题来做一下,就会很快的得到提高。

  对于数据分析师来说,业务的了解比数据方法论更重要。而且业务学习没有捷径。这一部分也没有什么书可以看的了,基本都靠搜索,总结,思考,再搜索,总结,思考。

  数据分析师要学会数据分析思维、编代码、懂数据库、统计、数据、等技能,还要懂业务、懂管理等。而且作为数据分析师,Excel是必备技能。个人以为要成为一名优秀的数据分析师,除了应具备专业知识外,成熟的人格、宽泛的视野也是必须要具备的。

  数据分析师要学会数据分析思维、编代码、懂数据库、统计、数据、机器学习等技能。

  作为一名数据科学家需要很挑剔,并且善于发现他人会遗漏的东西。那么我们应该如何做到像数据科学家一样思考呢?梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑性。

  如果希望拥有专业水准的话,从编程基础到端到端的开发,一些技术的语言,比如R、Python、和一些商业软件的SAS、SPSS等,以及深入的交互式学习,这些你至少精通几门,其他懂一些最好。

  数据分析大多应用实际。企业数据常常被保存在MySQL、Oracle、Postgres、MonogoDB、Cassandra等数据库中,所以这些数据库你要了解甚至懂。

  关于数学知识,大学课堂会学过一部分,如果是数学科学类的专业会学得更精深。如果这一部分你需要弥补一下充充电,可汗学院、麻省理工都有相关的开放课程。关于统计学知识,推荐去udacity,openintro上系统的学习,统计还是需要一定思维的锻炼的。

分享到:
您使用的浏览器版本过低,不仅存在较多的安全漏洞,也无法完美支持最新的web技术和标准,请更新高版本浏览器!!